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140 Letters t o  the Editor 

J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  IK G R E A T  B R I T A I N  

Lower bounds to second-order corrections to eigenvalues of 
observables of stationary quantum systems 

Abstract. This letter finds lower bounds to the second-order correction to the 
eigenvalue of an observable for the ith excited state of a stationary quantum system. 

It was shown in an earlier paper (Sharma 1967, to be referred to as I) how upper bounds 
to the second-order correction to the ith excited eigenvalue of a Hermitian operator 
perturbed by another Hermitian operator can be obtained by a modification of the Hylleraas 
functional. This letter finds the corresponding lower bounds using the same formalism. 

We use notations defined in the paragraph preceding theorem 1 of I. Any further 
notation will be defined as and when needed. 

We recall that E,(2)( \Y >) in our notation denotes the Hylleraas functional for the ith 
excited state. We know from theorem 1 of I that its value, which is stationary for an 
arbitrary variation in the trial ket, is the exact second-order correction to the eigenvalue 
and the corresponding ket is the exact first-order correction ket. In  other words, as 

IT) -+ \ @,(I) ), (Ep '  - E t ( 2 ) )  --f 0. (1) 

i y ( j Y ) ) )  = (Ao-€~(o))~Y)+(lJ~-€t(~))~@*(o)).  (2) 

We define a ket ] y ( l Y ) ) )  depending on the trial ket ]Y) as follows: 

It is obvious that the norm of l y ( l Y ) ) ) ,  which we shall denote by l ly( ] 'F))~l ,  is another 
functional whose absolute minimum corresponds to the exact first-order correction ket t 
in other words, as 

(3) 
The Hylleraas functional for the ith excited state (provided that i is finite) was shown in 

I to be related to a convenient upper bound to the second-order correction to the eigenvalue. 
Since the norm is necessarily non-negative, by subtracting a suitable multiple of l]y( lY'))i/ 
from the upper bound one can always get a lower bound. Relations (1) and (3) indicate 
that the deviation of the Hylleraas functional from the second-order correction could be 
reIated to the square of the norm of Iy(1Y))) .  If this is so, it should be possible to 
find the lowest value of CI for which we can say with certainty that 

B,'2'( IT)) = E,'y /Y )) - +( IY))j < €,(2). (4) 
Using the expansion defined in equation (3) of I for IY) it is easy to derive that 

A comparison of equations ( 5 )  and (6) and a moment's reflection makes it evident that the 
desired value of E is given by 

1 
1 

For this value of x ,  Bi(2)( iT)) is a lower bound to even though it is not possible to 
assert that E, ( z ) ( IY ) )  is an upper bound. Derivation of a rigorous upper bound from 
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E i ( 2 ) ( \ Y ) )  requires the addition of some further terms (see I). The  calculation of the very 
same extra terms makes it possible to find a better lower bound. I t  is easy to derive that 

which is the desired final result. It is plainly obvious that if IY) has the form prescribed 
by any of the corollaries of I, Bi(2)( JY}) itself becomes the better lower bound, for, under 
these prescribed restrictions, the terms under the summation sign in relation (8) all vanish 
identically. 

I t  is interesting to note that for i = 0 we revert to the ground state and in the con- 
figuration space the two lower bounds of relation (8) both become identical with the 
lower bound derived by Robinson (1969) for the ground state and the configuration 
space using an entirely different approach and formalism. Our result is completely 
general and is valid for the ground state as well as the excited states and for any complete 
inner-product space. 
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Internal energy and gravitation 

Abstract. A previous theory of the interaction of an ideal fluid with the gravitational 
field, as given by Rastall in 1968, is modified. It is now assumed that the natural 
internal energy per unit mass of the fluid is a function of the natural pressure and 
density. 

I n  a recent paper (Rastall 1968, to be referred to as 11) the interaction of an ideal fluid 
and a gravitational field was discussed. I t  was assumed in 11, § 6, that UE(x) ,  the proper 
internal energy per unit proper mass of the fluid at the point with coordinates x, is a function 
of the proper pressurep(x) and the proper mass per unit proper volume p(x), but is indepen- 
dent of the gravitational potential a. (The suffix E in UE indicates that this quantity is 
measured in natural units, while the absence of a suffix on p and p means that they are 
measured in Q0 units, i.e. the units corresponding to one of the preferred charts of the 
theory.) We now think that this is not the most natural assumption. We still suppose 
that LTE is independent of CD. This follows from the fundamental hypothesis that physical 
quantities measured in natural units are the same in the potential @ as in the potential 
@+k for any constant k, and from the more special assumption? that LTE(x) depends on 0 

t We exclude the possibility that Uc depends on the derivatives of @, which it may in strong 
gravitational fields. 


